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4.1  Abstract

It has long been believed that the information content of single neurons in the first olfactory process-

ing nucleus is very low, both because of the overlapping nature of the ensemble representation of

odors and because of their low signal to noise ratio, which has been estimated to be as low as 10-4

(Freeman, 1990). Here, I take the point of view of the organism and applied to olfaction for the first

time an algorithm to identify the odor presented by observing spike trains of projection neurons in

the antennal lobe of the locust. The information in one spike train of a single neuron sufficed to iden-

tify a stimulus among several presented on up to 95% of all trials. I characterize the timescale of

optimal information extraction for two different neural codes: while information in single neurons is

robust to a variety of readout temporal scales, including a rate code, the information rate across

assemblies of neurons is significantly greater when taking temporal response patterns into account.

PN assemblies are shown to be most informative when decoded with a time constant on the order of

several hundred milliseconds. This is shown to be due to the burstiness of PN spike trains: The

timescale at which PN response patterns are found to vary is on average significantly longer than

that previously reported (Wehr and Laurent, 1996). I characterize the information present in assem-

blies of increasing numbers of neurons. Finally, I characterize the reliability and sparseness of the

representation as a function of the timescale of the code with which it is read out.
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4.2  Introduction

Perhaps the foremost task of the early olfactory system is to convey enough information

about olfactory stimuli to be able to discriminate between odors with different behavioral relevance.

In the olfactory bulb of vertebrates and the antennal lobe of insects, it has long been believed that

information is coded by distributed assemblies of neurons. In addition, these neurons have been

thought to be very noisy, with signal-to-noise ratios close to 10-4 (Freeman, 1990). The information

in single neurons has thus been considered insufficient to identify odors. The present work quanti-

fies such information present in single projection neurons (PNs) in the antennal lobe of the locust. 

4.3  Results

Single PNs allowed correct odor identification in 81% of trials on average when a single concentra-

tion of each odor was presented (chance = 50%)  (n=12 PNs) and above 95% for several PNs

exposed to three odors (chance = 33%) (Fig. 4.1). When multiple concentrations of each odor were

presented, the task of the recognition of odor identity was naturally made more difficult. Single PNs

nevertheless exhibited enough information to recognize odor identity correctly in up to 50% of all tri-

als on average (chance = 26%) (n=46 PNs) (Fig. 4.2).

To find the duration at which any further information in spike trains becomes redundant with earlier

information, I varied the length of the spike trains used for classification systematically. The informa-

tion content of spike trains saturated at windows of 0.5–1 sec (n=13 PNs, Fig. 4.4). The mean infor-

mational content of spike trains for the discrimination of odor quality peaked at odor onset and

suffered a fall 500 msec after odor onset (n=13 PNs, Fig. 4.5).
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Although for individual PNs temporal information could yield significantly better classification than

spike counts alone (Fig. 4.5), on average across all PNs tested, information in single neurons was

barely greater using temporal information than using spike counts alone (Fig. 4.2). Furthermore, fir-

ing rate variations over longer timescales was less variable across trials and concentrations, and

therefore classification based on spike count was better than that based on T values on the order of

the length of an oscillation cycle (50 ms) (Fig. 4.2).

Odors can be identified reliably based on
the output of single neurons (97% correct below)

Cherry
trials

Hexanol
trials

Octanol
trials

Distance to cherry trials.   Distance to hexanol trials.  Distance to octanol trials.

Figure 4.1. Information in single PNs can reliably identify the odor presented. Each plot shows all trials for one
odor. Each line shows one trial; the first trial of the corresponding series is displayed at the bottom of each plot. The
axis for each point represents the mean distance between a spike train and all (other) spike trains for a given odor
(class). Trials whose distance to their own class is smaller than that for other classes are correctly classified; others are
shown as crosses —only the second octanol trial is misclassified, as hexanol.
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Figure 4.2. Fraction of trials for which the odor was correctly classified as a function of the timescale at which
the spike trains of single PNs were decoded. Each trial is assigned to the class with the lowest arithmetic mean dis-
tance to it (a) or to the class with the lowest geometric mean distance to it, with exponent=-15 for the averaging (b)
(blue bars, n=47 PNs). The former classifies spike trains to the class closest on average over all trials for that odor; the
latter amounts to classification into the class with the closest trials altogether. Each odor was presented for 1 sec at var-
ious concentrations from 2% to 100% of saturated vapor pressure. For a complete explanation of T, see methods. Red
bars denote chance levels of classification.
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To test whether this was the consequence of using single cells for classification, I classified the

spike trains of 19 PNs simultaneously recorded by Stijn Cassenaer in response to one concentration

of 16 odorants. Classification was performed using two different neural codes that employ different

ways to pool across neurons (see Reich et al., 2001). The first, which I call population code in keep-

Figure 4.3. Odor discrimination as a function of the length of the spike trains used for classification. The
latency was kept at the one yielding best classification in the range starting from 1 second before the odor onset to 1
second after the odor onset. Discrimination was performed for a single concentration of different odors.
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ing with Reich et al.’s nomenclature, simulates an integrate-and-fire downstream decoder by treat-

ing spikes from all neurons equally regardless of neuronal identity. One spike train was computed

that aggregates the spikes across all PNs, and classification was performed based on distances

between these aggregate spike trains. Using this algorithm, classification was significantly better

using temporal information than using spike counts alone (Fig. 4.6), but was hardly better than using

just a single cell. The second algorithm, called labeled line code, does not throw away information

about neuronal identity of each spike. All neurons receive equal weight in the classification decision:

Figure 4.4. Odor discrimination as a function of the latency of the start of the spike train considered. Discrimi-
nation was performed for a single concentration of different odors.



Information in temporal population coding, 138
the distance used for classification is the sum of the distances for individual cells. Because each PN

carries different stimulus information, classification using the labeled line code was significantly bet-

ter than that using the population code (Fig. 4.7). Classification using the labeled line code yielded

98% correct classification among the 16 odors presented, and presented almost perfect classifica-

tion even when only using spike counts (Fig. 4.7).

To test whether this timescale independence of the labeled line code was due to a saturation in

information due to the high ratio of # of neurons/ # of odors, I calculated classification rates as a

Figure 4.5. A single PN exhibits better classification using temporal information than using spike count alone
(T tending to Infinity) when classification is to the closest class performing linear averaging across all trials
(green) and geometric averaging with exponent = -15 (blue) (see Methods; see Fig. 4.2 for mean classification-
across 19 PNs).
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Figure 4.6. Odor discrimination by an assembly of 19 simultaneously recorded PNs among 16 odors using the
population code (red, see text) and using single PNs (blue; means and S.E.M.), as a function of the timescale
T of decoding (see Methods), for linear averaging across trials (z=1, above) and geometric averaging (z=-15,
below).For each trial, 7.5 sec beginning with the onset of a 3 sec long odor pulse were used for discrimination.
Chance levels are indicated by the black dashed line.

10 25 50 100 250 500 10002000 Inf
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T (msec)

Fr
ac

tio
n 

of
 tr

ia
ls

 c
or

re
ct

z=1

10 25 50 100 250 500 10002000 Inf
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T (msec)

Fr
ac

tio
n 

of
 tr

ia
ls

 c
or

re
ct

z=-15



Information in temporal population coding, 140
10 25 50 100 250 500 10002000 Inf
0

0.2

0.4

0.6

0.8

1

T (msec)

Fr
ac

tio
n 

of
 tr

ia
ls

 c
or

re
ct

z=1

10 25 50 100 250 500 10002000 Inf
0

0.2

0.4

0.6

0.8

1

T (msec)

Fr
ac

tio
n 

of
 tr

ia
ls

 c
or

re
ct

z=-15

Figure 4.7. Odor discrimination by an assembly of 19 simultaneously recorded PNs among 16 odors using
the labeled line code (green, see text), the population code (red) and single cells (blue), as a function of the
timescale T of decoding (see Methods), for linear averaging across trials (z=1, above) and geometric averag-
ing (z=-15, below). For each trial, 7.5 sec beginning with the onset of a 3 sec long odor pulse were used for discrim-
ination. Chance classification levels are indicated by the black dashed line.
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function of the number of neurons used in decoding for each decoding timescale used (Fig. 4.8). For

each number of neurons, 40 randomly chosen subsets of the 19 neurons were used (unless the

maximum number of combinations was less than 40, in which case all combinations were used).

The same information is plotted in a different format in Fig. 4.9, which shows that indeed, for smaller

PN assemblies for which the information content is not saturated, temporal information improves

classification accuracy. The transmitted information per cell is approximately constant at 0.3 bits/

neuron after the first neuron and up to within 0.5 bits of the total stimulus information available in our

experiments (Fig. 4.18). Assuming this linearity holds throughout the entire antennal lobe when the

stimulus set is sufficiently large, this yields a total bandwidth of  250 bits for the locust  antennal lobe

(830 neurons x 0.3 bits/neuron), which would allow the discrimination of 10^75 odors.

Classification rates, however, were maximal for timescales much larger than the timescale of the

oscillations which were previously hypothesized to form the basis for a temporal code based on the

fact that some PNs exhibit different firing probabilities for successive cycles (Wehr and Laurent,

1996). This suggested that PN responses might exhibit significant correlations on timescales

smaller than 1 second. To test that, I calculated the matrix of conditional probabilities 

P(x,y) = p(# of spikes in cycle N=y | # of spikes in cycle N-1=x) 

over all trials of all concentrations of all odors presented to 46 PNs (data collected by the author;

Fig. 4.10) and over all trials of all odors at one concentration presented to 12 PNs (data collected by

Katrina MacLeod; Fig. 4.11). These matrices showed a strong correlation between the number of

spikes in successive non-overlapping 50 msec windows. This correlation was present both following

odor presentations (r=0.67, p<<10-6, Spearman ranksum correlation test, 3 sec period following

odor stimulation, Figs. 4.10-4.11) and during the 1 sec period preceding odor presentation (r=0.64,

p<<10-6, Spearman ranksum correlation test, Fig. 4.12). The effect is very signficant: over all trials
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Figure 4.8. Odor discrimination for the labeled line code as a function of the size of the cell assembly used for
decoding. Each line represents a different timescale used for decoding (T values, inset).
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Figure 4.9. Odor discrimination for the labeled line code as a function of the timescale used for decoding (T).
Each line represents a different size of the cell assembly used for decoding (key, inset).
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Figure 4.10. PNs are bursty: The probability of firing of a PN in any given cycle is significantly enhanced if the
PN has fired in previous cycles, and the number of spikes in successive cycles is significantly correlated. a)
P(x,y) = p(# of spikes in cycle N=x | # of spikes in cycle N-1=y). Probabilities calculated over several concentrations of
more than 100 PN-odor pairs of 46 PNs. b)  The same data plotted as line plots of the probability distributions of the #
of spikes in cycle N-1. Each curve represents a different # of spikes in cycle N (see legend). Note the shift rightward in
the curves as the # of spikes in cycle N increases. 
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Figure 4.11. PN odor responses are bursty. These plots were computed for a set of 12 PNs different from those in
Fig. 4.10 for a single concentration of each odor  (data courtesy of Katrina MacLeod). See Fig. 4.10 legend for details.
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Figure 4.12. PNs’ basal activity is bursty: The probability of firing of a PN in any given cycle during basal
activity between odor stimulations is significantly enhanced if the PN has fired in previous cycles, and the
number of spikes in successive cycles is significantly correlated. a) P(x,y) = p(# of spikes in cycle N=y | # of
spikes in cycle N-1=x). b)  The same data plotted as line plots of the probability distributions of the # of spikes in cycle
N-1. Each curve represents a different # of spikes in cycle N (see legend). Note the shift rightward in the curves as
the # of spikes in cycle N increases. These plots were calculated for the same cells as Fig. 4.11.
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for all odors for the 46 PNs in Fig. 4.10 and during the 1-second period of odor stimulation, the prob-

ability of encountering a spike in any 50 msec long time window was 0.04 if there had been no

spikes in the preceding 50 msec window, but jumped to 0.61 if there had been one or more spikes in

the preceding window (see Table 1).

To confirm this correlation and measure its timescale, I calculated spike-triggered firing rate aver-

ages for 119,351 spikes in 10,730 trials in 377 cell/odor/conc datasets for 46 PNs. Beyond a refrac-

tory period, PNs exhibited a large positive autocorrelation with a time constant of several hundred

milliseconds both during odor responses (Fig. 4.13a) and baseline firing (Fig. 4.13b).

In the locust, the output of PN assemblies is decoded by Kenyon cells (KCs) in the mushroom bod-

ies1. The decoding scheme for individual KCs is quite different from the classification algorithms

TABLE 1. Conditional probabilities of PN spike counts in 50 msec windows during 1 sec period of 
odor stimulation

X

P(0 spikes | X 
spikes in 
previous 50-
msec)

P(1 spike | X 
spikes in 
previous 50-
msec)

P(2 spikes | X 
spikes in 
previous 50-
msec)

P(3 spikes | X 
spikes in 
previous 50-
msec)

P(4 spikes | X 
spikes in 
previous 50-
msec)

0 0.9641      0.0313 0.0041 0.0005 0.0000

1 0.4661   0.4056   0.1174   0.0102   0.0008

2 0.1866   0.4359   0.3092   0.0623   0.0060

3 0.0987 0.1947   0.4409   0.2211   0.0445

4 0.0625 0.0625 0.2768 0.3482 0.2500

Row 
probabilities 
may not add up 
to 1 due to 
windows with 
5+ spikes.

Calculated over 
all trials for all 
odors for 46 
PNs.

1. As well as by Lateral Horn inhibitory neurons.
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Figure 4.13. PNs exhibit a positive autocorrelation with a time constant of several hundred milliseconds both
during odor responses (a) and baseline firing (b).
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employed above: KCs exhibit sparse representation of odors, often responding to only one odor. It

thus reasonable to expect that the properties of the decoding algorithms are likely to minimize false

positives and false negatives in a representation where each KC codes only for the odor that excites

it the most, rather than maximizing odor discrimination across the entire spectrum of odors. To study

the effect of the timescale of decoding on the reliability of the encoding of single odors by KCs, I cre-

ated simple model KCs that smoothed each PN’s response by convolving it with a Gaussian of stan-

dard deviation Tau and then integrated the smoothed inputs of 10 PNs together additively. The

number 10 was chosen because combinatorial arguments and existing data on PN-KC connectivity

suggest that any one KC integrates inputs from a number of PNs that is less than 20, and that it fires

upon activation of a subset of these probably not exceeding 10 (Bäcker and Laurent, unpublished

results). On any given trial, the model KC fired if and only if its PN inputs exceeded a threshold

value at any point in time. No dynamics were considered for the KC. I then calculated, for each of 16

odors, the  threshold value such that all trials of that odor elicited a response from the model KC.

The odor which yielded the highest such threshold was selected as the model KC’s preferred odor,

and the KC’s threshold was set to the corresponding threshold value. Then, the proportion of trials

for non-preferred odors which elicited a response from the model KC was calculated, and called the

proportion of false positives. If the representation is sparse and reliable, this proportion should be

low; otherwise, it will be higher. The proportion of false positives was then computed as a function of

the timescale Tau at which the PN inputs were smoothed. As was the case with odor discriminability

using Victor and Purpura’s algorithm above, odor discriminability with this sparse coding scheme

also was optimal for timescales on the order of 1-2 sec:  the proportion of false positives decreased

with increasing Tau (Fig. 4.14). Sensitivity to variations in PN spike trains on a timescale of 1-2 oscil-

lation cycles did not contribute to enhance the reliability and sparseness of the representation.
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Figure 4.14. The fraction of false positive responses of a model Kenyon cell coding for 1 odor out of 16 and
with its threshold set to have no false negatives decreases as the timescale (Tau) of the decoding algorithm
is increased (see Text for details). a) Mean fraction of trials which yield false positives over 20 different PN assem-
blies. b) Minimum fraction of trials which yield false positives over 20 different PN assemblies, i.e., fraction of false
positive trials for the most discriminating set of PNs.

b.

a.



Information in temporal population coding, 151
4.4  Discussion

In summary, I have shown that odor information in single PNs allows classification among several

odors significantly above chance levels. This information peaks at odor onset and decays about 500

ms later. The information content of single PN spike trains saturates at 500-1000 ms. Different PNs

carry non-redundant information: correct classification rates were significantly higher if I kept track

of neuronal identity than if responses were summed over the PN assembly.  Increasing the size of

the PN assembly increased correct classification rates, saturating at about 10 PNs. No further

improvement was seen by increasing the size of the PN assemblies from 10 to 19. The optimal

timescale for decoding proved to be of the order of 1-2 seconds, yielding significantly higher classifi-

cation rates than the timescale of the oscillation cycles of 50 milliseconds. This was true both for sin-

gle PNs and PN assemblies, and both for discrimination among all odors presented and a sparse

coding scheme in which each decoder encoded a single odor. The preferred timescale of decoding

can be explained by the observation that PN responses, both during odor presentation and between

odor stimuli, are highly correlated on the timescale of several hundred milliseconds.

This correlation over timescales of hundreds of milliseconds is in sharp contrast with the results of

Wehr and Laurent (1996), who reported on 4 PNs some of whose firing probabilities changed

abruptly from one oscillation cycle to the next for any given odor. Although I have observed such

PNs with highly precise and fast-varying firing rates in my data as well (Fig. 4.15), they constitute a

minority of all PNs recorded, as evidenced by the analysis across 77 PNs presented here. More rep-

resentative of the majority is a bursty PN (Fig. 4.16). The differences cannot be explained by a dif-

ferential recording bias in favor of bursty PNs with high firing rates on my part, because the same

degree of correlation in PN responses was observed not only in the recordings of Katrina MacLeod,

but also in extracellular tetrode recordings in which the position of the electrodes is not manipulated



Information in temporal population coding, 152
6

-1 0 1
Time (sec)

Figure 4.15. The response to cherry (a) and citral (b) of a PN with precise and brief response patterns, as
described by Wehr and Laurent (1996). Responses such as these are found in a minority of PNs. They are typ-
ically characterized by short latencies, low intertrial variability and short duration. These probably constitute a sub-
type of PNs, since their responses to all odors all typically fall in the same category of precise, brief, early responses.
The odors were presented from t=0 to 1 s.
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Figure 4.16. The response to apple (a) and cherry (b) of a PN in another locust than that shown in Fig. 4.15.
This PN, more representative of the majority of PN recordings than that in Fig. 4.15, responds to odors with
bursts of spikes lasting several hundred milliseconds. This type of neuron is responsible for the highly significant
slow autocorrelation observed across all 77 PNs analyzed above.
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for individual cells (Fig. 4.17).
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Figure 4.17. Spike-triggered average firing probability for 19 PNs simultaneously recorded with 2 tetrodes
(data courtesy of Stijn Cassenaer). As with intracellular recordings (Fig. 4.13), a positive autocorrelation on a
timescale of several hundred milliseconds is observed.
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The work of Stopfer and colleagues (1997) and Chapter 5 of this thesis (part of which has been pub-

lished as MacLeod et al., 1998) has shown that synchronization on a timescale much smaller than

that seen here to be optimal for decoding is required for fine olfactory discrimination and the read-

out of PN assemblies by downstream neurons. The functional advantage conferred by such selec-

tivity remains unknown, and will be addressed in the first part of the next chapter. It is possible that

neuronal biophysics makes it impossible to integrate over timescales of several hundred millisec-

onds, making the ideal decoding algorithm biologically implausible. Alternatively, it is possible that

the analysis of larger numbers of simultaneoulsy recorded PNs, or the analysis of decoding algo-

Figure 4.18. Transmitted information as a function of the number of projection neurons used for odor identifi-
cation.
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rithms that approximate Kenyon cells more closely than those used herein, will reveal a role for fast

timescales in the decoding of PN assemblies. Finally, it is possible that fast timescales are useful in

the encoding of the rapidly varying signals in natural dynamic odor plumes rather than the more uni-

form odor pulses used in the experiments in this thesis and in the previous work of the laboratory. 

4.5  Applications

The method applied here to classify spike trains into the stimulus classes most likely to have given

rise to them, and slight variations on it, have been widely applied (MacLeod, 1999; Stopfer and Lau-

rent, 1999; Friedrich and Laurent, 2001; Bhazenov et al., 2001, Ch. 8, this thesis) since the publica-

tion of parts of this work (MacLeod et al., 1998).

 

4.6  Methods

Surgery, Odor delivery and Electrophysiology

See Chapters 7-9, Methods.

Clustering analysis

The clustering analysis is based on the cost-based metric methods (Victor and Purpura, 1997)

according to which a ‘distance’ is computed between spike trains. This distance is defined as the

cost paid to transform one spike train into the other using three elementary steps: insertion; deletion
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of a spike (each at a cost of 1); and displacement of a spike by 1 ms (cost of 2/T for each displace-

ment, where T is the maximum separation in ms allowed between the spike time in one train and

that in the other). I used a range for T between 16 and 4,000, with T = 150 providing the best classi-

fication overall. Results were not greatly different for 16 <= T <= 1000. Classification was carried out

using two methods: In one, the mean distance between a spike train and all spike trains of a stimu-

lus class was an arithmetic mean (all points equal); in the second, the mean (M) was geometric, with

the exponent set to -15 (less weight to outliers): 

% trials correct must be normalized to
account for varying # of odors tested

0% 100%

0% 100%33%

50%

2 odors

3 odors

chance

chance

Figure 4.19. Normalization of fraction correct to a two-alternative-forced-choice scenario.
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Percent correct results from choosing among all odors without restriction to pairwise assignments in

those neurons that responded to more than two odors. For each neuron i, chance level is thus 1/mi,

where mi is the number of odors to which neuron i responded.  The effective number of odors for the

mean percentage correct was calculated as (<1/mi>)-1. When mean rates are shown as 50%, mean

percentage correct was then normalized to a two-alternative-forced-choice scenario by dividing the

difference between the percentage correct observed and the chance level given the effective num-

ber of odors, by 0.5, i.e., the maximum improvement above chance possible after normalization. For

the lag and duration analyses, in order to obtain a distribution of percentages for all datasets to be

able to compare across lag or duration values, percentages of trials correct were normalized for

each dataset using a piecewise linear transformation between the space for the actual number of

odors for each dataset and a normalized space with 2 odors, such that 0, 100% and chance levels

were fixed points and mapped to the corresponding point in the other space, and all other points

underwent a linear mapping using the closest fixed points as anchors (Fig. 4.19).

For the estimation of discrimination as a function of latency and spike train duration, this method

was then applied to successive sliding windows of the spike trains, varying the duration and lag of

the windows with respect to the time of stimulus onset (Fig. 4.20).
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spike train segments
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Figure 4.20. Schematic diagram of method used to estimate odor discrimination as a func-
tion of latency and spike train duration.
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