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Odors appear to be represented in the antennal lobe of the locust by odor-specific, but

overlapping, evolving assemblies of synchronously firing  projection neurons. These projection neu-

rons (PNs) fire in temporal patterns which are odor- and cell-specific. I have examined the variability

of the responses of these cells across repeated stimulus presentations of the same odor. I found

strong correlations (p<0.001) between the variability of spike trains of many, but not all, simulta-

neously recorded pairs of PNs. In some of these pairs, the firing of the neurons was negatively cor-

related: i.e. one neuron fired less than on average on trials when the other neuron fired more than

on average. In other pairs, the firing was positively correlated. The correlation in some cell pairs was

odor-evoked, and, interestingly, happened only at a particular epoche in the dynamically evolving

response. I also observed significant correlations during periods of no odor stimulation, which disap-

peared at the onset of the odor responses. When the variability of the responses was analyzed as a

function of time in the trial – assessed as the variance in the firing rate for short time windows – the

variability appeared to vary systematically as the response evolved in time, so that a given cell

would exhibit periods of high variability and periods of low variability. In summary, we found intertrial

variability was not independent neuronal noise and that neurons are coupled at several timescales.

These results suggest that the effective connectivity of the antennal lobe varies as the response to

odors unfolds in time. From the standpoint of neural analysis, these results suggest that there is

much to be gained in analyzing single trials rather than PSTH's

 This work, which was presented in Bäcker, Wehr and Laurent, 1997, was carried out on

pairs and triplets of PNs  recorded simultaneously by Michael S. Wehr.

Methods

Electrophysiological recordings were done in vivo in immobilized adult locusts (Schistocerca ameri-

cana ).We simultaneously recorded extracellularly from two or three PN’s with an equal number of
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glass micropipettes while one-second long puffs of odor were applied to one antenna at regular

intervals.  We later assessed the independence of the variability of two neurons’ responses, i.e. the

Figure IX.1. Some spikes are reliable; others are not. Odors evoke temporal response patterns of variable reliabil-
ity in projection neurons (PNs). Notice the extreme degree of repeatability across trials in the first burst in the left dia-
gram, and the much more irregular nature of firing patterns in the second burst or in the diagram on the right. Trials
are aligned on the odor delivery pulse onset. Note also the atypical response pattern after odor onset in trial 4 for both
PNs. Odor delivery lasts 1 sec, marked 1-2 sec. From Wehr & Laurent (1996), Nature 384: 162-166. 
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deviation away from their respective average responses, by computing the correlation coefficient (r)

between the number of spikes in each cell for a specified time window in the odor response. This

correlation coefficient yields 1 for perfect correlation, 0 for independent variables, and –1 for perfect

anticorrelation. We then plotted this correlation coefficient both as a function of time in the trial and

of lag between the time windows for both cells. The significance of the numbers thus obtained was

Figure IX.2. There is a tight coupling between two PN’s spike count on a trial by trial basis. Spike count of each
cell during a 3- second time window following odor presentation. Each data point represents the activity of two cells
recorded simultaneously during one trial. The line shows the best linear interpolation of the data. The correlation coef-
ficient is –0.72, indicative of a strong negative correlation between the firing of the two cells. Note that it is impossible to
derive this information by using only responses averaged over trials.  
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assessed by performing the same computation for a large number of data sets in which the order of

the trials had been randomly shuffled. This manipulation preserves the average responses (PSTH)

Figure IX.3. The covariation in firing rates across cell pairs is highly significant. Histogram of correlation coeffi-
cients between the two cells in Fig. IV.2 obtained with 100,000 random rearrangements of trial order in one of those
cells, showing that the probability of obtaining by chance a correlation magnitude as large as or greater than that in Fig.
IV.2 is less than 0.0005.
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intact, but eliminates all simultaneity between the records of the two cells. 

             < # spikes cell 1 . # spikes cell 2 > - < # spikes cell 1 > . < # spikes cell 2 >

r =  ----------------------------------------------------------------------------------------------------

       [ <(# spikes cell 1)2>.<# spikes cell 1>2.( <(# spikes cell 2)2>.<# spikes cell 2>2]1/2 

Significance of a measurement among multiple comparisons

Determining the statistical signficance of the correlation timecourses shown in the figures in

this appendix is not trivial, because each time series presents multiple measurements. This is

explained in the general discussion below, together with some proposed solutions for different

cases.

Let us assume we are making an experiment in which we are trying to decide if any of a set

of measurements under experimental condition A is different from the corresponding set of mea-

surements made under the negative control condition B. For example, we might be trying to tell

whether a spike train in response to a stimulus is different from spike trains under a control condition

where there is no stimulus; one measurement might be the # of spikes within a time window, the set

might be given by a series of successive windows. The null hypothesis is that both sets are indistin-

guishable: that the response to A is no different from that to B. 

If making many measurements and reporting any deviation from the value expected given

the null hypothesis, the probability of finding a value equal or greater than X given the null hypothe-

sis is not given by the probability of finding that value if one were performing a single measurement

--even if one uses the probability for the measurement that actually gave the deviation. 
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P = p(any of N measurements >= X) = 1 - p(all N measurements < X) 

If all N measurements are independent, we can write

P = 1 - p(M1<X).p(M2<X)…(p(MN>=X)

Furthermore, if all N measurements are drawn from the same distribution and thus have the same p-

values

P = 1 - [1-p(one measurement >= X)]N

Thus if we are making two independent measurements, and we wish to be as strict as if we were

doing a single measurement and using a p-value of 0.05, we must make P above equal to 0.05:

0.05=1-(1-p value from a single comparison to be reported as significant given mul-

tiple comparisons)N 

p value from a single comparison to be reported as significant given multiple com-

parisons = Nth root of 0.05 , and thus report any measurement where p<1-(1-0.05)^2.

But what if we do not know if the measurements are independent, or if we suspect they are

not? There are at least two possible empirical solutions:

A. If one has plenty of experiments under the experimental condition (condition A): one can

use a subset of the experiments (e.g. half of them) to identify measurements that one believes may

be significant, and then formulate a specific hypothesis that those are significant, that one can then

test with the rest of the experiments and for which one can obtain a p-value without accounting for

multiple comparisons, since there is only one hypothesis being tested. 

B. If one has access to plenty of negative controls, but few under the experimental condition

(A) so that partitioning the set of condition A experiments is impractical: 

1. Calculate the p-value, without accounting for multiple comparisons, for the mea-
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surement whose multiple comparisons (MC)-corrected p-value we wish to obtain. 

2. For each of the other measurements, calculate, without accounting for multiple

comparisons, the level of the measurement that constitutes the same p-value calculated in (1). 

3. By analyzing a large number of trials for the negative control, compute the prob-

ability that a set of measurements (one of each type, e.g. one in each time window) in the negative

control yields any value more extreme than the corresponding levels calculated in (2). This will be

the multiple-comparisons-corrected p-value for the result obtained in the original measurement used

in (1).
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Figure IX.4. There is no correlation between successive trials of a pair of cells. The plot on the right was obtained
by shifting all trials of one cell by one trial position. The disappearance of the correlation found on the left-hand plot
illustrates the transient nature of thesecorrelations. The dashed lines represent the p=0.05 significance value, mea-
sured from the variance of r  for sets of randomly shuffled trials (see above).
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Figure IX.5. Correlations can be positive or negative and occur during specific periods of the odor response.
Plot of the correlation coefficient (r) of the spikes in two PN's as a function of time in the trial. Each point represents r for
a single time window centered around the point. 
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Figure IX.6. Cell pairs can correlate (top) or decorrelate (bottom) in response to an odor. A decorrelation is a
change from coordinated variability to independent responses. The two neurons in the bottom plot had highly corre-
lated activity before and after odor presentation, but suffered a marked decrease in their correlation during the duration
of the odor pulse.
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Figure IX.7. Correlations occur within specific neuronal populations. Recordings from triplets of neurons show that
correlations and their timecourses are specific to a particular neuronal pair. The triplet above exhibits 3 different correla-
tion patterns in the 3 pairs that compose it (top, center and bottom).
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Figure IX.8 The cross-correlation for this pair of PNs exhibits a timeconstant of several hundred milliseconds
and a peak at roughly 50 ms lag (i.e. 1 oscillation cycle). The plot above shows the covariance between the number
of spikes in one time window for each cell, as a function of the lag of one cell’s window with respect to the other cell’s.


